Quantification of an External Motion Surrogate for Quality Assurance in Lung Cancer Radiation Therapy
نویسندگان
چکیده
The purpose of this work was to validate the stability of the end exhale position in deep expiration breath hold (DEBH) technique for quality assurance in stereotactic lung tumor radiation therapy. Furthermore, a motion analysis was performed for 20 patients to evaluate breathing periods and baseline drifts based on an external surrogate. This trajectory was detected using stereo infrared (IR) cameras and reflective body markers. The respiratory waveform showed large interpatient differences in the end exhale position during irradiation up to 18.8 mm compared to the global minimum. This position depends significantly on the tumor volume. Also the baseline drifts, which occur mostly in posterior direction, are affected by the tumor size. Breathing periods, which depend mostly on the patient age, were in a range between 2.4 s and 7.0 s. Fifteen out of 20 patients, who showed a reproducible end exhale position with a deviation of less than 5 mm, might benefit from DEBH due to smaller planning target volumes (PTV) compared to free breathing irradiation and hence sparing of healthy tissue. Patients with larger uncertainties should be treated with more complex motion compensation techniques.
منابع مشابه
Evaluation of Accuracy and Quality assurance of external beam therapy with photons
Introduction: Receiving exact dose by the patients is vital in radiotherapy. In radiation therapy, the dosimetry of radiations is too important because of successful radiation inquires for delivering the exact dose to the target volume. This study is to evaluate the tolerances and the accuracy of calculated dose of photon beams in the treatment software system. The TECDOC1583 p...
متن کاملRespiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.
Introduction: The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer. Materials and Methods: Two CT scan was performred for each pati...
متن کاملA quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates
Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...
متن کاملDesign and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014